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Introductory Definition: Unary Algebras

A set A and a collection F of unary operations on A.

Can be represented as a directed graph.
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Useful ideas

Let a = (ax)x∈X ∈ AX .

The content of a is {ax : x ∈ X}.

The format of a is an equivalence relation on X with (x , y) is in
the format iff ax = ay .
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Introductory Definition: Subdirect Products

A special type of subalgebra of the direct product.

Projection Maps:

I π1 : A× B → A, (a, b) 7→ a

I π2 : A× B → B, (a, b) 7→ b

A subdirect product is a subalgebra P of A× B, such that
π1|P , π2|P are surjective.
Can be extended to an arbitrary number of factors.
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Universality

Theorem
(Birkhoff) Every algebra is a subdirect product of its subdirectly
irreducible quotients.

An algebra is subdirectly irreducible if whenever it is expressed as a
subdirect product of Πi∈IAi , then some projection πi is an
isomorphism.
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Fiber Products

For algebras A,B,Q and surjective homomorphisms φ : A→ Q
and ψ : B → Q,

{(a, b) ∈ A× B : φ(a) = ψ(b)}

is a subdirect product of A× B. This is called the fiber product of
A and B with respect to φ, ψ.

Theorem
(Fleischer’s Lemma) Every subdirect product of two algebras in a
congruence permutable variety is a fiber product.
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Boolean Powers

Let A be an algebra and B be a boolean algebra of subsets of S .
Then the boolean power AB is the set of tuples a ∈ AS such that
every equivalnce class in the format of a is in B.

AB is a subdirect product of AS .
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How many subdirect powers are there?

Theorem
(Hickin, Plotkin 1981, Mckenzie 1982) A finite group G has
countably many non-isomorphic countable subdirect powers iff G is
abelian.

Theorem
(Clayton, Ruškuc, in prep) A finite commutative semigroup S has
countably many non-isomorphic countable subdirect powers iff S is
an abelian group or a zero semigroup.

Theorem
(Ruškuc, de Witt) A finite unary algebra (A,F) has countably
many non-isomorphic countable subdirect iff each f ∈ F is either a
bijection or a constant map.
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Tools for Unary

Definition
Let (A,F) be a unary algebra. Then we define the following:

1. B ⊆ A is a bottom level component if it is strongly connected
and for all a ∈ B and f ∈ F , we have f (a) ∈ B.

2. for a bottom level component B, an outer section of A with
respect to B is a connected component of the graph A \ B.

3. T ⊆ A is a top level component if it is strongly connected and
there does not exist a ∈ A \ T and f ∈ F such that f (a) ∈ T .

Lemma
The above are preserved under isomorphism.
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Tools for Uncountable Type

Lemma
Let (A,F) be a finite unary algebra, and a ∈ AN be a tuple with
cont(a) = A. Then the set
{f1 ◦ · · · ◦ fn(a) : f1, . . . , fn are bijections in F , n ∈ N} is a top level
component of AN.



Proof outline

Let Mon(A) be the monoid of functions on A generated by F ,and
pick an g ∈ Mon(A) such that |g(A)| > 1 is minimal.

Pick a nice sequence of tuples b1, b2, . . . with elements from g(A).

For a each tuple bk find tuples tk,1, . . . , tk,k which are contained in
distinct top level components, such that g(tk,i ) = bk .

This gives a collection of algebras Sn = 〈tn,1, . . . , tn,n〉 which are
all non-isomorphic, and whose pairwise intersections are either all
empty or all a bottom level component of the diagonal.

Take arbitrary unions of the Sn, and add in the diagonal to ensure
subdirectness, giving uncountably many subdirect powers.
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Infinite examples

Let CN be a monounary algebra, containing precisely one cycle of
every length.

CN has uncountably many countable subdirect powers.

Let T2 be a unary algebra on a countable set, whose operations are
the bijections which are the identity on all but two points.
T2 has uncountably many countable subdirect powers.

(N,+1) has countably many subdirect powers.
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Does an algebra have countably many countable subdirect powers
if and only if it is abelian?

Question
Is being boolean separating algebras equivalent to having
uncountably many countable subdirect powers?
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Related Questions

For finite groups we know the answer:

Countably many
subdirect powers

Non-Boolean
Separating

Abelian

⇒
6⇐

⇒⇐ ⇒ 6⇐

Lawrence,1981



Related Questions

Using our results we have the following for the general case:

Countably many
subdirect powers

Non-Boolean
Separating

Abelian

⇒
6⇐

6⇐
6⇐



Thank you for listening


