The Number of Countable Subdirect Powers of Finite Unary Algebras

Bill de Witt Joint work with Nik Ruškuc

2021

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Introductory Definition: Unary Algebras

A set A and a collection \mathcal{F} of unary operations on A.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Introductory Definition: Unary Algebras

A set A and a collection \mathcal{F} of unary operations on A. Can be represented as a directed graph.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introductory Definition: Unary Algebras

A set A and a collection \mathcal{F} of unary operations on A. Can be represented as a directed graph.

▲ロト▲園ト▲目ト▲目ト 目 のなの

Useful ideas

Let
$$\mathbf{a} = (a_x)_{x \in X} \in A^X$$
.

Useful ideas

Let
$$a = (a_x)_{x \in X} \in A^X$$
.

The content of *a* is $\{a_x : x \in X\}$.

Useful ideas

Let
$$a = (a_x)_{x \in X} \in A^X$$
.

The content of *a* is $\{a_x : x \in X\}$.

The format of a is an equivalence relation on X with (x, y) is in the format iff $a_x = a_y$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A special type of subalgebra of the direct product.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A special type of subalgebra of the direct product. Projection Maps:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

►
$$\pi_1: A \times B \rightarrow A$$
, $(a, b) \mapsto a$

►
$$\pi_2 : A \times B \rightarrow B$$
, $(a, b) \mapsto b$

A special type of subalgebra of the direct product. Projection Maps:

- $\blacktriangleright \ \pi_1: A \times B \to A, \ (a,b) \mapsto a$
- ▶ $\pi_2: A \times B \rightarrow B$, $(a, b) \mapsto b$

A subdirect product is a subalgebra P of $A \times B$, such that $\pi_1|_P, \pi_2|_P$ are surjective.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A special type of subalgebra of the direct product. Projection Maps:

- ► $\pi_1: A \times B \rightarrow A$, $(a, b) \mapsto a$
- ▶ $\pi_2: A \times B \rightarrow B$, $(a, b) \mapsto b$

A subdirect product is a subalgebra P of $A \times B$, such that $\pi_1|_P, \pi_2|_P$ are surjective.

Can be extended to an arbitrary number of factors.

Universality

Theorem

(Birkhoff) Every algebra is a subdirect product of its subdirectly irreducible quotients.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Universality

Theorem

(Birkhoff) Every algebra is a subdirect product of its subdirectly irreducible quotients.

An algebra is subdirectly irreducible if whenever it is expressed as a subdirect product of $\prod_{i \in I} A_i$, then some projection π_i is an isomorphism.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Fiber Products

For algebras A, B, Q and surjective homomorphisms $\phi : A \to Q$ and $\psi : B \to Q$,

$$\{(a, b) \in A \times B : \phi(a) = \psi(b)\}$$

is a subdirect product of $A \times B$. This is called the fiber product of A and B with respect to ϕ, ψ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Fiber Products

For algebras A, B, Q and surjective homomorphisms $\phi : A \to Q$ and $\psi : B \to Q$,

$$\{(a, b) \in A \times B : \phi(a) = \psi(b)\}$$

is a subdirect product of $A \times B$. This is called the fiber product of A and B with respect to ϕ, ψ .

Theorem

(Fleischer's Lemma) Every subdirect product of two algebras in a congruence permutable variety is a fiber product.

Let A be an algebra and B be a boolean algebra of subsets of S. Then the boolean power A^{B} is the set of tuples $a \in A^{S}$ such that every equivalnce class in the format of a is in B.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let A be an algebra and B be a boolean algebra of subsets of S. Then the boolean power A^{B} is the set of tuples $a \in A^{S}$ such that every equivalnce class in the format of a is in B. A^{B} is a subdirect product of A^{S} .

(ロ)、(型)、(E)、(E)、(E)、(O)()

Theorem

(Hickin, Plotkin 1981, Mckenzie 1982) A finite group G has countably many non-isomorphic countable subdirect powers iff G is abelian.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem

(Hickin, Plotkin 1981, Mckenzie 1982) A finite group G has countably many non-isomorphic countable subdirect powers iff G is abelian.

Theorem

(Clayton, Ruškuc, in prep) A finite commutative semigroup S has countably many non-isomorphic countable subdirect powers iff S is an abelian group or a zero semigroup.

Theorem

(Hickin, Plotkin 1981, Mckenzie 1982) A finite group G has countably many non-isomorphic countable subdirect powers iff G is abelian.

Theorem

(Clayton, Ruškuc, in prep) A finite commutative semigroup S has countably many non-isomorphic countable subdirect powers iff S is an abelian group or a zero semigroup.

Theorem

(Ruškuc, de Witt) A finite unary algebra (A, \mathcal{F}) has countably many non-isomorphic countable subdirect iff each $f \in \mathcal{F}$ is either a bijection or a constant map.

Lemma

Let (A, f) be a finite monounary algebra, and let f be a bijection. Then A has countably many non-isomorphic subdirect powers.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Lemma

Let (A, f) be a finite monounary algebra, and let f be a bijection. Then A has countably many non-isomorphic subdirect powers.

Lemma

Let (A, f) be a finite monounary algebra, and let f be a constant function. Then A has countably many non-isomorphic subdirect powers.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Lemma

All other finite monounary algebras have uncountably many non-isomorphic subdirect powers.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Lemma

All other finite monounary algebras have uncountably many non-isomorphic subdirect powers.

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー わえの

Lemma

All other finite monounary algebras have uncountably many non-isomorphic subdirect powers.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Tools for Unary

Definition

Let (A, \mathcal{F}) be a unary algebra. Then we define the following:

- 1. $B \subseteq A$ is a bottom level component if it is strongly connected and for all $a \in B$ and $f \in \mathcal{F}$, we have $f(a) \in B$.
- 2. for a bottom level component B, an outer section of A with respect to B is a connected component of the graph $A \setminus B$.
- 3. $T \subseteq A$ is a top level component if it is strongly connected and there does not exist $a \in A \setminus T$ and $f \in \mathcal{F}$ such that $f(a) \in T$.

Tools for Unary

Definition

Let (A, \mathcal{F}) be a unary algebra. Then we define the following:

- 1. $B \subseteq A$ is a bottom level component if it is strongly connected and for all $a \in B$ and $f \in \mathcal{F}$, we have $f(a) \in B$.
- 2. for a bottom level component B, an outer section of A with respect to B is a connected component of the graph $A \setminus B$.
- 3. $T \subseteq A$ is a top level component if it is strongly connected and there does not exist $a \in A \setminus T$ and $f \in \mathcal{F}$ such that $f(a) \in T$.

Lemma

The above are preserved under isomorphism.

Tools for Uncountable Type

Lemma

Let (A, \mathcal{F}) be a finite unary algebra, and $a \in A^{\mathbb{N}}$ be a tuple with $\operatorname{cont}(a) = A$. Then the set $\{f_1 \circ \cdots \circ f_n(a) : f_1, \ldots, f_n \text{ are bijections in } \mathcal{F}, n \in \mathbb{N}\}$ is a top level component of $A^{\mathbb{N}}$.

Let Mon(A) be the monoid of functions on A generated by \mathcal{F} , and pick an $g \in Mon(A)$ such that |g(A)| > 1 is minimal.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Let Mon(A) be the monoid of functions on A generated by \mathcal{F} , and pick an $g \in Mon(A)$ such that |g(A)| > 1 is minimal.

Pick a nice sequence of tuples b_1, b_2, \ldots with elements from g(A).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let Mon(A) be the monoid of functions on A generated by \mathcal{F} , and pick an $g \in Mon(A)$ such that |g(A)| > 1 is minimal.

Pick a nice sequence of tuples b_1, b_2, \ldots with elements from g(A).

For a each tuple b_k find tuples $t_{k,1}, \ldots, t_{k,k}$ which are contained in distinct top level components, such that $g(t_{k,i}) = b_k$.

Let Mon(A) be the monoid of functions on A generated by \mathcal{F} , and pick an $g \in Mon(A)$ such that |g(A)| > 1 is minimal.

Pick a nice sequence of tuples b_1, b_2, \ldots with elements from g(A).

For a each tuple b_k find tuples $t_{k,1}, \ldots, t_{k,k}$ which are contained in distinct top level components, such that $g(t_{k,i}) = b_k$.

This gives a collection of algebras $S_n = \langle t_{n,1}, \ldots, t_{n,n} \rangle$ which are all non-isomorphic, and whose pairwise intersections are either all empty or all a bottom level component of the diagonal.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let Mon(A) be the monoid of functions on A generated by \mathcal{F} , and pick an $g \in Mon(A)$ such that |g(A)| > 1 is minimal.

Pick a nice sequence of tuples b_1, b_2, \ldots with elements from g(A).

For a each tuple b_k find tuples $t_{k,1}, \ldots, t_{k,k}$ which are contained in distinct top level components, such that $g(t_{k,i}) = b_k$.

This gives a collection of algebras $S_n = \langle t_{n,1}, \ldots, t_{n,n} \rangle$ which are all non-isomorphic, and whose pairwise intersections are either all empty or all a bottom level component of the diagonal.

Take arbitrary unions of the S_n , and add in the diagonal to ensure subdirectness, giving uncountably many subdirect powers.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

 $C_{\mathbb{N}}$ has uncountably many countable subdirect powers.

 $C_{\mathbb{N}}$ has uncountably many countable subdirect powers.

Let T_2 be a unary algebra on a countable set, whose operations are the bijections which are the identity on all but two points.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $C_{\mathbb{N}}$ has uncountably many countable subdirect powers.

Let T_2 be a unary algebra on a countable set, whose operations are the bijections which are the identity on all but two points. T_2 has uncountably many countable subdirect powers.

- ロ ト - 4 回 ト - 4 □

 $C_{\mathbb{N}}$ has uncountably many countable subdirect powers.

Let T_2 be a unary algebra on a countable set, whose operations are the bijections which are the identity on all but two points. T_2 has uncountably many countable subdirect powers.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 $(\mathbb{N},+1)$ has countably many subdirect powers.

Question

Does an algebra have countably many countable subdirect powers if and only if it is abelian?

Question

Does an algebra have countably many countable subdirect powers if and only if it is abelian?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Question

Is being boolean separating algebras equivalent to having uncountably many countable subdirect powers?

For finite groups we know the answer:

Countably many subdirect powers

Non-Boolean Separating

V A

 \mathcal{T}_{i}

Lawrence,1981

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Abelian

Using our results we have the following for the general case:

Countably many subdirect powers

Non-Boolean Separating

- ロ ト - 4 回 ト - 4 □

Abelian

Thank you for listening

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ