The Number of Countable Subdirect Powers of Finite Unary Algebras

Bill de Witt
Joint work with Nik Ruškuc

2021

Introductory Definition: Unary Algebras

A set A and a collection \mathcal{F} of unary operations on A.

Introductory Definition: Unary Algebras

A set A and a collection \mathcal{F} of unary operations on A.
Can be represented as a directed graph.

Introductory Definition: Unary Algebras

A set A and a collection \mathcal{F} of unary operations on A.
Can be represented as a directed graph.

Useful ideas

Let $\mathrm{a}=\left(a_{x}\right)_{x \in X} \in A^{X}$.

Useful ideas

Let $\mathrm{a}=\left(a_{x}\right)_{x \in X} \in A^{X}$.
The content of a is $\left\{a_{x}: x \in X\right\}$.

Useful ideas

Let $\mathrm{a}=\left(a_{x}\right)_{x \in X} \in A^{X}$.
The content of a is $\left\{a_{x}: x \in X\right\}$.
The format of a is an equivalence relation on X with (x, y) is in the format iff $a_{x}=a_{y}$.

Introductory Definition: Subdirect Products

A special type of subalgebra of the direct product.

Introductory Definition: Subdirect Products

A special type of subalgebra of the direct product.
Projection Maps:

- $\pi_{1}: A \times B \rightarrow A,(a, b) \mapsto a$
- $\pi_{2}: A \times B \rightarrow B,(a, b) \mapsto b$

Introductory Definition: Subdirect Products

A special type of subalgebra of the direct product.
Projection Maps:

- $\pi_{1}: A \times B \rightarrow A,(a, b) \mapsto a$
- $\pi_{2}: A \times B \rightarrow B,(a, b) \mapsto b$

A subdirect product is a subalgebra P of $A \times B$, such that $\left.\pi_{1}\right|_{P},\left.\pi_{2}\right|_{P}$ are surjective.

Introductory Definition: Subdirect Products

A special type of subalgebra of the direct product.
Projection Maps:

- $\pi_{1}: A \times B \rightarrow A,(a, b) \mapsto a$
- $\pi_{2}: A \times B \rightarrow B,(a, b) \mapsto b$

A subdirect product is a subalgebra P of $A \times B$, such that $\left.\pi_{1}\right|_{P},\left.\pi_{2}\right|_{P}$ are surjective.
Can be extended to an arbitrary number of factors.

Universality

Theorem
(Birkhoff) Every algebra is a subdirect product of its subdirectly irreducible quotients.

Universality

Theorem
(Birkhoff) Every algebra is a subdirect product of its subdirectly irreducible quotients.
An algebra is subdirectly irreducible if whenever it is expressed as a subdirect product of $\Pi_{i \in I} A_{i}$, then some projection π_{i} is an isomorphism.

Fiber Products

For algebras A, B, Q and surjective homomorphisms $\phi: A \rightarrow Q$ and $\psi: B \rightarrow Q$,

$$
\{(a, b) \in A \times B: \phi(a)=\psi(b)\}
$$

is a subdirect product of $A \times B$. This is called the fiber product of A and B with respect to ϕ, ψ.

Fiber Products

For algebras A, B, Q and surjective homomorphisms $\phi: A \rightarrow Q$ and $\psi: B \rightarrow Q$,

$$
\{(a, b) \in A \times B: \phi(a)=\psi(b)\}
$$

is a subdirect product of $A \times B$. This is called the fiber product of A and B with respect to ϕ, ψ.

Theorem
(Fleischer's Lemma) Every subdirect product of two algebras in a congruence permutable variety is a fiber product.

Boolean Powers

Let A be an algebra and B be a boolean algebra of subsets of S. Then the boolean power A^{B} is the set of tuples $a \in A^{S}$ such that every equivalnce class in the format of a is in B.

Boolean Powers

Let A be an algebra and B be a boolean algebra of subsets of S. Then the boolean power A^{B} is the set of tuples $a \in A^{S}$ such that every equivalnce class in the format of a is in B. A^{B} is a subdirect product of A^{S}.

How many subdirect powers are there?

How many subdirect powers are there?

Theorem
(Hickin, Plotkin 1981, Mckenzie 1982) A finite group G has countably many non-isomorphic countable subdirect powers iff G is abelian.

How many subdirect powers are there?

Theorem
(Hickin, Plotkin 1981, Mckenzie 1982) A finite group G has countably many non-isomorphic countable subdirect powers iff G is abelian.

Theorem
(Clayton, Ruškuc, in prep) A finite commutative semigroup S has countably many non-isomorphic countable subdirect powers iff S is an abelian group or a zero semigroup.

How many subdirect powers are there?

Theorem
(Hickin, Plotkin 1981, Mckenzie 1982) A finite group G has countably many non-isomorphic countable subdirect powers iff G is abelian.

Theorem
(Clayton, Ruškuc, in prep) A finite commutative semigroup S has countably many non-isomorphic countable subdirect powers iff S is an abelian group or a zero semigroup.

Theorem
(Ruškuc, de Witt) A finite unary algebra (A, \mathcal{F}) has countably many non-isomorphic countable subdirect iff each $f \in \mathcal{F}$ is either a bijection or a constant map.

Monounary case

Lemma

Let (A, f) be a finite monounary algebra, and let f be a bijection. Then A has countably many non-isomorphic subdirect powers.

Monounary case

Lemma

Let (A, f) be a finite monounary algebra, and let f be a bijection.
Then A has countably many non-isomorphic subdirect powers.
Lemma
Let (A, f) be a finite monounary algebra, and let f be a constant function. Then A has countably many non-isomorphic subdirect powers.

Monounary case

Lemma

All other finite monounary algebras have uncountably many non-isomorphic subdirect powers.

Monounary case

Lemma

All other finite monounary algebras have uncountably many non-isomorphic subdirect powers.

Monounary case

Lemma

All other finite monounary algebras have uncountably many non-isomorphic subdirect powers.

Tools for Unary

Definition

Let (A, \mathcal{F}) be a unary algebra. Then we define the following:

1. $B \subseteq A$ is a bottom level component if it is strongly connected and for all $a \in B$ and $f \in \mathcal{F}$, we have $f(a) \in B$.
2. for a bottom level component B, an outer section of A with respect to B is a connected component of the graph $A \backslash B$.
3. $T \subseteq A$ is a top level component if it is strongly connected and there does not exist $a \in A \backslash T$ and $f \in \mathcal{F}$ such that $f(a) \in T$.

Tools for Unary

Definition

Let (A, \mathcal{F}) be a unary algebra. Then we define the following:

1. $B \subseteq A$ is a bottom level component if it is strongly connected and for all $a \in B$ and $f \in \mathcal{F}$, we have $f(a) \in B$.
2. for a bottom level component B, an outer section of A with respect to B is a connected component of the graph $A \backslash B$.
3. $T \subseteq A$ is a top level component if it is strongly connected and there does not exist $a \in A \backslash T$ and $f \in \mathcal{F}$ such that $f(a) \in T$.

Lemma
The above are preserved under isomorphism.

Tools for Uncountable Type

Lemma
Let (A, \mathcal{F}) be a finite unary algebra, and $\mathrm{a} \in A^{\mathbb{N}}$ be a tuple with $\operatorname{cont}(a)=A$. Then the set $\left\{f_{1} \circ \cdots \circ f_{n}(\mathrm{a}): f_{1}, \ldots, f_{n}\right.$ are bijections in $\left.\mathcal{F}, n \in \mathbb{N}\right\}$ is a top level component of $A^{\mathbb{N}}$.

Proof outline

Let $\operatorname{Mon}(A)$ be the monoid of functions on A generated by \mathcal{F}, and pick an $g \in \operatorname{Mon}(A)$ such that $|g(A)|>1$ is minimal.

Proof outline

Let $\operatorname{Mon}(A)$ be the monoid of functions on A generated by \mathcal{F}, and pick an $g \in \operatorname{Mon}(A)$ such that $|g(A)|>1$ is minimal.

Pick a nice sequence of tuples b_{1}, b_{2}, \ldots with elements from $g(A)$.

Proof outline

Let $\operatorname{Mon}(A)$ be the monoid of functions on A generated by \mathcal{F}, and pick an $g \in \operatorname{Mon}(A)$ such that $|g(A)|>1$ is minimal.

Pick a nice sequence of tuples b_{1}, b_{2}, \ldots with elements from $g(A)$.
For a each tuple b_{k} find tuples $t_{k, 1}, \ldots, t_{k, k}$ which are contained in distinct top level components, such that $g\left(t_{k, i}\right)=b_{k}$.

Proof outline

Let $\operatorname{Mon}(A)$ be the monoid of functions on A generated by \mathcal{F}, and pick an $g \in \operatorname{Mon}(A)$ such that $|g(A)|>1$ is minimal.

Pick a nice sequence of tuples b_{1}, b_{2}, \ldots with elements from $g(A)$.
For a each tuple b_{k} find tuples $t_{k, 1}, \ldots, t_{k, k}$ which are contained in distinct top level components, such that $g\left(t_{k, i}\right)=b_{k}$.

This gives a collection of algebras $S_{n}=\left\langle t_{n, 1}, \ldots, t_{n, n}\right\rangle$ which are all non-isomorphic, and whose pairwise intersections are either all empty or all a bottom level component of the diagonal.

Proof outline

Let $\operatorname{Mon}(A)$ be the monoid of functions on A generated by \mathcal{F}, and pick an $g \in \operatorname{Mon}(A)$ such that $|g(A)|>1$ is minimal.

Pick a nice sequence of tuples b_{1}, b_{2}, \ldots with elements from $g(A)$.
For a each tuple b_{k} find tuples $t_{k, 1}, \ldots, t_{k, k}$ which are contained in distinct top level components, such that $g\left(t_{k, i}\right)=b_{k}$.

This gives a collection of algebras $S_{n}=\left\langle t_{n, 1}, \ldots, t_{n, n}\right\rangle$ which are all non-isomorphic, and whose pairwise intersections are either all empty or all a bottom level component of the diagonal.

Take arbitrary unions of the S_{n}, and add in the diagonal to ensure subdirectness, giving uncountably many subdirect powers.

Infinite examples

Let $C_{\mathbb{N}}$ be a monounary algebra, containing precisely one cycle of every length.

Infinite examples

Let $C_{\mathbb{N}}$ be a monounary algebra, containing precisely one cycle of every length.
$C_{\mathbb{N}}$ has uncountably many countable subdirect powers.

Infinite examples

Let $C_{\mathbb{N}}$ be a monounary algebra, containing precisely one cycle of every length.
$C_{\mathbb{N}}$ has uncountably many countable subdirect powers.
Let T_{2} be a unary algebra on a countable set, whose operations are the bijections which are the identity on all but two points.

Infinite examples

Let $C_{\mathbb{N}}$ be a monounary algebra, containing precisely one cycle of every length.
$C_{\mathbb{N}}$ has uncountably many countable subdirect powers.
Let T_{2} be a unary algebra on a countable set, whose operations are the bijections which are the identity on all but two points.
T_{2} has uncountably many countable subdirect powers.

Infinite examples

Let $C_{\mathbb{N}}$ be a monounary algebra, containing precisely one cycle of every length.
$C_{\mathbb{N}}$ has uncountably many countable subdirect powers.

Let T_{2} be a unary algebra on a countable set, whose operations are the bijections which are the identity on all but two points.
T_{2} has uncountably many countable subdirect powers.
$(\mathbb{N},+1)$ has countably many subdirect powers.

Related Questions

Question
Does an algebra have countably many countable subdirect powers if and only if it is abelian?

Related Questions

Question

Does an algebra have countably many countable subdirect powers if and only if it is abelian?

Question

Is being boolean separating algebras equivalent to having uncountably many countable subdirect powers?

Related Questions

For finite groups we know the answer:

Countably many subdirect powers

\Rightarrow
\nLeftarrow
Non-Boolean Separating

π
π
Lawrence,1981

Abelian

Related Questions

Using our results we have the following for the general case:

Countably many subdirect powers
 \Rightarrow \neq
 Non-Boolean
 Separating

Abelian

Thank you for listening

